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Abstract— To solve the path schematization in the 
complicated environments, a new adaptive schematization 
methodology using ant colony algorithm (AACA) based on 
prognosticative learning is presented. A novel 
prognosticative operator for direction during the ant colony 
state transition is constructed based on an obstacle 
restriction method (ORM), and the prognosticative results 
of proposed operator are taken as the prior knowledge for 
the learning of  the initial ant pheromone, which improves 
the optimization efficiency of ant colony algorithm (ACA). 
To further solve the stagnation problem and improve the 
searching ability of ACA, the ant colony pheromone is 
adaptively adjusted under the limitation of pheromone. 
Compared with the corresponding ant colony algorithms, 
the simulation results indicate that the proposed algorithm 
is characterized by the good convergence performance on 
pheromone during the path schematization. Furthermore, 
the length of planned path by AACA is shorter and the 
convergence speed is quicker.   
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I.  INTRODUCTION  

Path schematization is one of key technologies in the 
autonomous navigation for mobile robot. It refers to 
searching an optimal or approximate optimal and 
collision-free path from the starting point to the goal 
according to certain optimization criterion (e.g., minimal 
working cost, shortest walking route) in the complicated 
environments. The path schematization for mobile robot 
is a kind of typical NP-Hard problem. The common 
methods include artificial potential field (APF) method, 
visibility graphs, free-space method, topological method, 
and so on. The APF method is used widely for its simple 
model, good real-time property and easy realization, 
however, it has some deficiencies in easily trapping into 
local minimum, swaying in cabined route way, etc. The 
traditional schematization methods have some 
deficiencies in global optimization and robustness, etc. In 
recent years, along with the development of artificial 
intelligent, some new intelligent algorithms have got 
considerable development, and show good flexibility, 
robustness and global optimization ability, such as fuzzy 
logical, neural network, genetic algorithm (GA), artificial 

immune algorithm and so on. To some extent, the fuzzy 
logical overcomes the local minimum, however, it has the 
disadvantage in the incompleteness of experiences and 
the fuzzy reasoning table will rapidly expand with the 
increase of input quantity. In the neural network 
technology for the path schematization, the awareness 
space of mobile robot is mapped into behavior space. To 
realize the path schematization, the data from sensors are 
taken as input of network, and the expected moving 
direction is taken as output. However, it is very difficult 
to get the sample data which distribute in the whole 
working space of robot. In the genetic algorithm for path 
schematization, the environment around robot is coded 
from the starting point to the goal, and the optimal path is 
achieved through continuous optimization using the 
selection, crossover, mutation operator, which is 
characterized by the global optimization ability and 
robust. However, the genetic algorithm has the 
deficiencies in the large searching space, complicated 
coding and large calculation, and so on. Inspired by the 
biology immune system, the artificial immune system 
develops a new approach for the path schematization for 
its properties of self-organization, self-learning and 
immunological memory. Xiao et al. realized the path 
schematization based on immune genetic algorithm 
through crossover, mutation and vaccine inoculation 
operator.  
However, the deficiencies in the GA still exist in the 
immune genetic algorithm. Meshref et al. solved the dog 
and sheep problem in the distributed autonomous robotics 
system based on Farmer’s dynamic model, however, the 
method is short of global optimization ability. Inspired by 
the mechanism of Jerne’s idiotypic network hypothesis, 
Zhuan et al. converted the path schematization into space 
search in the antibody network using the stimulation and 
suppression between the antigen and antibody, and 
provided a new immune network algorithm (INA), 
Experimental results show that the INA is characterized 
by good quickness and flexibility, however, the searching 
precision and convergence property of INA need further 
improvement. From the development of path 
schematization, much attention has been focused on the 
bionic artificial intelligence algorithms. Ant colony 
algorithm (ACA) is a kind of optimization algorithms for 
the graph search and is characterized by the positive 
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feedback, parallel computing and strong robustness, 
which is inspired by the mechanism of ant  
finding foods in nature. At present, ACA is successfully 
used in the digital image processing, data mining, pattern 
recognition, especially path schematization for the mobile 
robots. Referencing the idea of artificial potential field 
method, Sun et al. constructed an attraction probability 
function whose weight can be adjusted and the function 
was taken as heuristic factor, which quickened the 
convergence speed of ACA, and also made the ACA 
easily trap into the local minimum. Based on the 
environment built using free-space method, Tan et al. 
finished the graph search using ACA. However, the 
characteristic information extraction of environments is a 
complex course. Gao et al. presented an augment ant 
colony algorithm to improve the searching efficiency of 
path schematization. At present, the initial pheromone of 
ACA is equal and constant. With the improvement of 
complexity of path schematization, unreasonable initial 
pheromone will increase the computation time and make 
the ACA trap into the local minimum. To improve the 
global schematization efficiency of ACA, a 
prognosticative operator for direction is constructed in 
this paper. The schematization results of prognosticative 
operator are taken as the prior knowledge and the initial 
pheromone is learnt using the knowledge. Furthermore, 
the evaporation coefficient of pheromone is adaptively 
adjusted, which improves the schematization efficiency 
and precision of ACA well.    

II. ANT COLONY ALGORITHM  

Inspired by the behavior of colonies of real ants, ant 
colony optimization algorithm was first proposed in the 
early 1990s by Marco Dorigo. It is known that each ant 
leaves the information on the path it has traversed by 
depositing a chemical substance called pheromone on the 
ground. Ants have a tendency to follow these pheromone 
trails. Within a fixed period, shorter paths between nest 
and food can be traversed more often than longer paths, 
and so they obtain a higher amount of pheromone, which, 
in turn, tempts a larger number of ants to choose them and 
thereby to reinforce them again. The behavior of ant 
colony is shown in Fig. 1. 

 

III. CONSTRUCTION OF PROGNOSTICATIVE 

OPERATOR       FOR DIRECTION AND 

LEARNING OF INITIAL    PHEROMONE 

To improve the decision ability to environment in the 
mobile robot autonomous navigation, an obstacle- 
restriction method (ORM) was presented. The expected 
direction for the mobile robots can be predicated using 
the ORM through determining the zones of goal and 
obstacles. In this paper, a prognosticative operator for 
direction is constructed and the initial pheromone is 
learnt based on Minguez’s ORM, which improves the 
searching efficiency of ACA in the path schematization. 
To corporate the construction of prognosticative operator, 
a virtual robot (ant) as shown in Fig.2 is provided. The 
robot is evenly equipped with eight virtual sensors and 
the detection direction is 1~8. 

 
The construction of prognosticative operator includes the 
following three steps.  
Step 1 Determine the goal zone Zgoal.  
Let  θgoal be the angle zone of goal  Pgoal at the detection  
direction of mobile robot. According to the principle of 
goal  
tendency, the goal zone can be defined as follows: 
               

 
The goal zone is constructed as shown in Fig.3(a).  
Step 2 Determine the obstacle zone Zobs. The 
determination of obstacle zone is based on single 
Obstacle or multiple adjacent obstacles. Multiple 
detached obstacles can be overlapped on the above 
model. Let θ obs be the angle zone of obstacle  Pobs at the 
detection direction (See Fig.3 (b)). Firstly, the dangerous 
zone is defined as follows. 
                             

 
Where, n is the number of detection zone of robot. The 
detection angle of dangerous zone is θ d. Considering the 
allowable shortest distance between the robot and 
obstacle, the safe zone is defined as follows. 
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Where,  Zs_R,  Zs_L are the left and right zone of 
dangerous  
zone respectively as shown in Fig.3(c).  
The obstacle zone (See Fig.3(d)) is defined as follows. 
            

 
Let θ Tobs be the direction angle of obstacle zone. 
Step 3 Determine the prognosticative zone. According to 
Zgoal and Zobs, the prognosticative zone is given by 
     

 
If  Zexp= Φ, there is no any superposition between the 
goal and obstacle zone (See Fig.3(e)), and the expected 
direction θexp is the same as the goal direction, i.e. 
                             

 
If  Zexp≠ Φ, there is superposition between the goal and 
obstacle zone (See Fig.3(f)), the �exp is defined as 
follows. 

 
Since the expected direction angle θexp is a zone, to 
facilitate the learning of initial pheromone of ACA, let -

θexp be the central anger of expected direction angle. If 
there is no any prior knowledge, the initial pheromone of 
ACA is ή =1/N (N is the number of grid around the ant), 
i.e. the concentration of pheromone between the ant and 
each adjacent grid is equal. In this paper, the 
schematization result of direction prognosticative 
operator is taken as the prior knowledge and the initial 
pheromone of ACA is optimized. The concrete operating 
sequences are as follows:  
Step 1 Confirm that the ant reaches the grid firstly.   
Step 2 Calculate the central anger -θexp based on the 

direction prognosticative operator.  
Step 3 Calculate the anger between the -θexp  and  moving 

directions to the eight adjacent grids around ant.  
Step 4 The grid with minimal angle is given the maximal 

pheromone, then grid is taken as center, and other 
grids are given the pheromone symmetrically with 
equal weights. In this paper, for the transition 
direction of ant is selected using a roulette-wheel 
algorithm, the grid with maximal pheromone will 
be selected with great probability and the grid is 

just the expected direction of ants, which will 
improve the transition speed of ants. In addition, 
the grid with minimal pheromone has the 
possibility to be selected too, which guarantees the 
rationality and diversity. In our experiment, 
according to the increasing sequence of angles, the 
initial pheromone of eight grids is given {0.4, 
0.19, 0.19, 0.07, 0.07, 0.03, 0.03, 0.02} 
respectively. 

 

 

IV. ADAPTIVE ACA BASED ON 

PROGNOSTICATIVE LEARNING  

Problem Description and Model Building 
According to the principle of path schematization based 
on ACA, the path schematization can be described using 
a directed graph G=(V, E, f), where V is the set of nodes 
of graph,  E is the set of edges connecting the nodes in 
the graph, f is the objective function of feasible solutions 
to path schematization, namely the collision free and 
shortest path. The artificial ant is placed in the graph G, 
and the graph is searched through the state transition of 
ants. Environment modeling is the key link of robot path 
schematization and is the mapping from the physical 
space to abstract space where the algorithm is carried out. 
The schematization results are usually embodied through 
the environmental model. At present, there are two kinds 
of modeling methods, one is geometric method, namely 
the environmental information is collected through the 
perception sensors installed in the robot, the abstract 
geometric characteristics are extracted from the 
information, the free position space is mapped to the 
weighted graph, and the path schematization is converted 
to the graph search; the other is grid method, namely the 
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whole schematization environment is divided into several 
grids with the same size, the data structure of grid is the 
pixel array, and each pixel has its position determined by 
the row and column. In this paper, the grid method is 
adopted to divide the environment information, the data 
is coded using direct coding and the environment is 
expressed using the graph theory thought which is from 
the geometric method. Let WS be a limited two-
dimensional (2-D) workspace in polygonal shape, where 
there exist some static obstacles Obsi (i=1,2,…,n). To 
avoid the robot too close to the obstacles, the boundaries 
of obstacles are expanded to some extent according to the 
cross section of robot and minimum distance between the 
robot and obstacle, and the robot is presented by a point. 
In the WS, the rectangular coordinate system Σ0 is built. 
The maximum of WS at the directions X and  Y are  xmax 
and  ymax respectively. Fig.4 shows the grid series with 
10x10, where the black squares denote the obstacles. 

 
 
Let δ  be the step size of mobile robot. The whole 
schematization zone is divided according to the step size. 
The number of grid in each row is Nx = (xmax)/( δ) , and 
the number in each column is  Ny = (ymax)/ (δ) . Let  g  be 
the any grid and  G  be the set of all grids in the  WS 

space, the determinate coordinate of   g∈ G  in  the  WS 

space is (x,y). Let N={1,2,3….,M} be the set of grid 
series number, there exist the following mapping 

relationship between the series number  i ∈ N  and 

coordinate  (xi,yi) of gi.  
 

     
 
Where, mod and int are the remain and round function 
respectively. 
 

Algorithm Flow 
Step 1 Initialize parameters: the maximum cycle times 
Tmax, ant number K, tabu list Tabuk k=1,2,…N, the 
number of initial grid and final grid, and other 

parameters. t←0 , k←0 .  

Step 2 Cycle times:  t← t+1.  

Step 3 Put the ant k at the initial grid:  k← k+1 , and the 

initial grid is placed in the tabu list Tabuk.  
Step 4 Judge whether the current grid is the grid that the 
ant arrived firstly. If so, the initial pheromone of the grid 
is learnt based on the prognosticative operator, or go to 
step 5.  
Step 5 Transfer ant k. To realize the reasonable transfer 
of ant  k from grid  i  to  j , the pseudo-random-
proportional rule is adopted in this paper. When ant k 
locates in grid i , the transfer function for ant to transfer 
to the next grid j is given as follows: 

 
Where, q is a value chosen randomly with uniform 

probability in [0, 1], q0 0 ≤ q0 ≤ 1  is a parameter such 

that the higher  q0  the smaller the probability to make a 

random choice, and variable  j′is determined according to 

the following equation: 

 
Where pij

k (t) denotes the transfer probability of ant k 
from grid  i  to  j  at  time  t,  α  is the pheromone 
enlightening factor,  β  is the goal enlightening factor, 
allowedk  is the next allowed grid chosen by ant k, τij(t) is 
the pheromone from grid  i  to  j at time t, and ηij(t) is the 
goal enlightening function, which is defined as follows: 

 
Step 6 Judge whether an ant has finished path search. If 
not, go to Step 4.   
Step 7 Judge whether all ants have finished a cycle. If 
not, go to Step 3, otherwise the pheromone is updated 
according to equation (13). 

 
Where, ρ  is the evaporation factor of pheromone, 1- ρ 
denotes the remnant factor of pheromone and ρؿሾ0,1ሿ . 
Δτij

k denotes the remnant pheromone on the path by ant k 
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in this cycle.  Δτij is the increment of pheromone on the 
path from grid i to  j in this cycle. In this paper, the Ant-
cycle model is adopted and defined as follows: 

 
Here,  Q  is a constant, and  Lk  is the length of path 
searched by ant  k. Evaporation factor  ρ reflects the 
remains of pheromone as time goes on, which will affect 
the global searching ability and convergence speed of 
ACA. If ρ is increased, the pheromone of grid that is 
rarely passed tends to 0, which affects the randomness of 
ACA and decreases the global searching ability. If ρ is 
decreased, the randomness and global searching ability 
are increased, however, the convergence speed will be 
decreased. In this paper, the evaporation factor ρ is 
adaptively changed and is expressed as follows: 
                        

  
Where, ρmin and ρmax are the minimal and maximal 
evaporation factor respectively, and  Tmax  is  the  
maximal cycle times.  
Step 8 Judge whether the termination conditions are 
satisfied. If not, go to step 2, otherwise output the optimal 
path.  
In this paper, the termination conditions include: (1) 
Reach the maximum cycle times; (2) The length of 
optimal path doesn’t change for several generations. To 
improve the optimization efficiency, the optimum 
reservation methodology is adopted during the 
optimization. 

V. SIMULATION EXPERIMENT AND ANALYSIS 

To verify the validity of adaptive ant colony algorithm 
(AACA) for path schematization based on the 
prognosticative learning, aiming at two environments 
which are divided into 25, some experiments are carried 
out with MATLAB RC2010 on an Intel Pentium IV 
3.1GHz computer with 2GB RAM, and the 
schematization results are compared with those of simple 
ant colony algorithm (SACA) and improved ant colony 
algorithm (IACA). Considering the randomness, each 
algorithm is independently tested many times. In AACA, 
K=20, α=1,β=2, ρmin=0.01, ρmax=0.98,Q=0.1. In SACA, 
K=20, α=1, β=2, ρ=0.85, Q= 0.1. In IACA,  K=20, α=2.5, 
ρmin= 0.5, weight coefficient of attraction enlightening 
factor K0=0.15, weight coefficient of turning times K1= 
15. The maximum cycle times of three algorithms are 50. 
The convergence condition of three algorithms is: The 
length of  optimal path doesn’t change for fifteen 
generations. Fig.5 and Fig.6 are the optimal 
schematization results in two environments respectively. 
From the two figures, it can be seen that three ant colony 
algorithms can find their optimal paths, which shows the 
self-organization, self-learning of  ant colony algorithm. 

 
 
Table I is the contrast of schematization results of three 
algorithms in two environments. P1, P2 and P3 are the 
convergence speed, length of optimal path, length of 
average path respectively. From the table, it can be seen 
that the transition efficiency of ant colony is improved for 
the initial pheromone in proposed AACA is learnt based 
on the prognosticative operator. Furthermore, the 
adaptive evaporation factor realizes the early approximate 
search and later subtle search during the path search, 
which make the convergence speed of AACA be the 
quickest, the length of optimal path and average path be 
the shortest. In addition, the convergence speed of SACA 
is the slowest, and its schematization ability is the worst. 
Fig. 7 is the average evolutionary curves of three 
algorithms in two environments. From the figure, it can 
be seen that the average  evolutionary speed of proposed 
AACA is the quickest and the optimization ability is the 
strongest. 
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                                  CONCLUSION 
To improve the schematization efficiency and precision 
of ACA, a prognosticative operator for direction based on 
ORM is presented in this paper. The schematization 
results of prognosticative operator are taken as the prior 
knowledge and the initial pheromone is learned. 
Furthermore, the evaporation factor is adaptively 
adjusted. The experimental results verify the 
effectiveness of proposed AACA. In this paper, the 
prognosticative operator is used to optimize the initial 
pheromone of ACA and the effective limits of 
prognosticative operator are the grids which are reached 
firstly by ants. To use the prognosticative operator 
effectively, the transfer function for ants can be re-
defined through integrating schematization results of 

prognosticative operator, and the action of 
prognosticative operator is expanded to the whole period 
of optimization of ACA, which will be helpful to the 
further improvement of ACA. How to realize the above 
improvement of ACA will be our future work.  
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